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Plane Waves on a Periodic Structure of Circular Disks

and Their Application to

JOSHUA SHEFERT,

Summary—The structure supporting the surface-wave consists
of a row of concentric circular disks embedded in a lossless dielectric
medium. Exact solutions for the “dipole mode” (corresponding to
the HE; surface-wave mode on a dielectric rod) are set up and an
approximation is derived for calculating the propagation constants.

It is shown experimentally that a pure “dipole mode” can be
excited by simple means, and that propagation constants may be
controlled over a wide range by varying the geometrical parameters
of the periodic structure.

The possible uses as a surface-wave antenna are discussed, and
approximate radiation patterns are calculated from the field dis-
tribution in the terminal plane,

I. INTRODUCTION
SURFACE WAVES!? may be guided by a variety

of periodic structures such as corrugated surfaces?®

or structures of conducting cylindrical rods.* In
this paper a periodic structure of circular conducting
disks is investigated. It is shown that, in common with
other periodic structures, a superposition of an in-
finite number of propagating modes can satisfy bound-
ary conditions at the cylindrical interface between
the periodic structure and free space. Surfaces of equal
phase are perpendicular to the propagation axis z, and
phase velocities are smaller than those in an unbounded
medium,

A periodic structure of disks may be used as an end-
fire antenna.® The circularly symmetrical modes give
zero radiation on the axis of the structure, and there-
fore attention is focused on the propagation characteris-
tics of the nonsymmetrical dipole mode, with a circular
field variation of cos ¢. This mode yields a maximum
of radiated power in the axial direction when used as
an antenna. It is shown that the beamwidth decreases
as the guided wavelength increases and approaches
that of free space, provided the excitation efficiency

* Received June 16, 1962; revised manuscript received August 6,
1962. This paper was presented at the Nat'l Electronics Conf.,
Chicago, I1l., October, 1961. It is based in part upon work done by
the author while at London University, England.

T Bell Telephone Laboratories, Inc., Whippany, N. J. Formerly
with the Gordon McKay Laboratory of Applied Science, Harvard
University, Cambridge, Mass.
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of the surface wave is kept constant.® This, as might
be expected, is hardly the case, and for antennas with
very loosely bound surface waves the excitation ef-
ficiency is probably the dominating factor in its per-
formance.

II. TueorETICAL DIiscussioN

Consider a periodic line shown in Fig. 1. It consists
of an array of infinitely thin circular disks with
common axis, which is taken as the z axis of the cylin-
drical coordinate system p, ¢, 2. A periodicity d is as-
sumed along the propagation axis z. The disks of
diameter 2a¢ are embedded in a dielectric medium of
constants ¢, g, and the cylindrical sandwich structure
is suspended in air.

Fig. 1-—Periodic structure of disks.

The wave solutions in periodic structures are de-
scribed by Floquet’s Theorem.” This solution is given
as a sum of “space harmonics” with a z dependence of
the mth wave given by

gz 1
where
. 2mr
Ym = 70+]—d“
m=0; +1; +2; =2 ..., (2)

The longitudinal components of £ and H at p>a are
given by

+o0
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6 J. Brown and J. O. Spector, “The radiating properties of end-
fire aerials,” Proc. IEE, vol. 104, Part B, No. 13, pp. 27-34; Janu-
ary, 1957.
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with where

—kn? = 2 2 5 . 2am
Yu® + oo ©) A

where Z, is a solution of the Bessel equation of order #.

The present discussion is restricted to the “dipole —En? = v + wequo
mode” where #=1. Since the region of p =0 is excluded . . )
the Bessel function of the third kind (Hankel function) 28d 4m, B denote amplitudes of electric and magnetic
and order one will be used. fields, respectively. The time factor e7t will be omitted

In order to have a plane wave (i.e., a phase change in throughout. i
the z direction only), k, must be real. Writing Ag, for In the spaces between disks when p<a, we assume
the guided wavelength of the mth wave and o for an cyhndn.cal waves supported by a parallel-plate radial
unbounded wave in free space, we have, from (5), waveguide. A set of TM and TE waves may be derived
from
Agm < Ao (6)

iz
We have, therefore, a superposition of slow waves, with Ean = CaJ1(hnp) cos ¢ cos P 0,1,2,---
decreasing phase velocities for increasing m. When the 3nd
periodicity d is small compared with the wavelength

. .. wr
of the zeroth space harrnonic Agy, it is seen that Hor = DuT(p) sin ¢ sin; . n=1,2,

b K ko, m #Z 0
with
and, by virtue of (3) and (4), other than zeroth-order
space harmonics are found only in close proximity to n\ 2
the periodic guiding structure. Thus, Agy is the only ha? = weu — <7> .
wave of practical interest once we are a fraction of a
wavelength away from the guiding interface p=a. This A complete set of radial waveguide fields is thus given
fundamental guided wavelength will be denoted hence- py
forth by Ag.

A complete description of the dipole mode fields
(r=1) outside the disks, where p>a, may be derived
from Maxwell’s equations, and we obtain

E,
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Boundary conditions require that tangential com-
ponents of electric and magnetic fields (Eq4, H,, E., H,)
be continuous at p=a. Thus from (7) and (8) we have,

> ApHi(fkna)e—me =

-0

> CoT1(hna) cos %W 2z
0

i i nw
> BuHi(jkna)e=mm* = > D, J1(h,a) sin o
1
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m
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We now multiply the first and fourth equations of (9)
by cos (nw/d)z, the second and third by sin (nr/d)sz,
and integrate from z=0 to z=d. On eliminating C,
and D, between the four sets of equations, we obtain
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Writing this set of equations in matrix form,
[K){4} = [L]{B}
[a]{4} = [V]{B] (11
possible propagation constants are given by
[M]IK]2[L] - [N] =0 (12)

where each matrix has an infinite number of elements.
For the general case, terms are only slowly converging
with m, and no exact expression for the v,’s has been
found.

For a closely spaced structure, however, where
d<<\,, an approximate expression has been derived. It
can be seen from (10) that higher order terms are very
much smaller than those of zeroth order. Taking lead-
ing terms and neglecting all others yields

<—£;>2 [(a/’jo)2 * (a/;) Zjl

~ oo flak) ig@m] [stak = iy | 9

#o
where
Hy'(jx)
0=
() = T (x)
gx) =7 74(x)

This characteristic equation can now be solved graph-
ically, but the process is still laborious. A further
simplication can be achieved by making 2a>d, which
is frequently the case for closely spaced structures, and
assuming u=puo. Eq. (13) then reduces to

[(;(;)2]2 = “QGO“O[f (ako) — io g(dho):]f(ako). (14)

This approximate solution is independent of the spac-
ing d.

Eq. (14) has been solved graphically using well-known
methods for solving transcendental equations. The
theoretical results for disks of up to 0.55\, in diameter
and e/ep=1 are shown in Fig. 2. For larger values of 2a,
(14) indicates a series of stop and pass bands. However,
near a stop band, as A;/A\<K1, the condition \;>3>d is no
longer fulfilled and the first-order approximation is no
longer valid.
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Fig. 2—Guided wavelength ), on disk structure, theoretical
values. 2¢ is disk diameter.

Subject to the same approximation, we may also
calculate the wave impedance of the zeroth-order
wave. This ratio is given by

Ay Ay
= —-7—a
ZoBy Ao

H1I<jdko)
" Hi(jake)

(15)

where

Mo
Zo= _— "

€0

As NNy, this ratio tends to unity. A plot of 4,/Z:By
as a function of A;/\¢ is shown in Fig. 3.

IT1I. EXPERIMENTAL DETERMINATION
or Puase VELOCITIES

The purpose of the experimental investigation was to
establish whether a “dipole mode” surface wave could
be supported by the disk structure of Fig. 1, and to
measure the propagation constant (or guided wave-
length) on structures with different disk diameters and
spacings.

Experiments were carried out with the aid of a sur-
face-wave resonator.® Eight sets of disks were cut
from aluminum sheet of 0.01\ thickness. The disk struc-
tures were mounted along the center of the resonator.
The disks were originally held in a slab of styrofoam:.
Subsequently it was found that the field on the axis
of the structure was not much perturbed by introducing

8 C. H. Chandler, “An investigation of dielectric rod as wave
guide,” J. Appl. Phys., vol. 20, pp. 1188-1192; December, 1949,
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Fig. 3—Theoretical values of impedance ratio 4¢/ZsBs.

a 2-mm diameter brass supporting rod with 5-mm
diameter polystyrene sleeves for spacing. The “dipole
mode” was excited by means of an open-end circular
waveguide propagating the dominant TE;; mode and
terminated by a circular opening at the resonator end
plate, as shown in Fig. 4. Resonance was obtained by
varying the oscillator frequency until a transmission
maximum through the resonator was observed by
means of a sensitive receiver. (A spectrum analyzer
was used for this purpose.) The distance between the
resonator end plates was accurately measured and was
kept constant throughout the measurements. For
every resonance observed, the free-space wavelength
was measured by means of an accurate wavemeter, and
the guided wavelength was determined by counting
the number of minima of the standing wave along the
resonator axis. This was done by moving a thin cy-
lindrical obstacle along the disk structure. The condi-
tion for resonance was unaffected only when the ob-
stacle was placed at a node of the electric field. By
counting the number of power output oscillations at
the receiver while the obstacle was traversing the
length of the resonator, the number of half-wavelengths
was found. The Q factor of the resonator was better
than 1000, and an over-all accuracy of 0.05 was es-
timated for the measured values of A,. All measurements
were made at wavelengths of approximately 10 cm.

Measured values of guided wavelength as a function
of disk diameter, with spacing as parameter, are shown
in Fig. 5. It is seen that phase velocities on the disk
structure depend to a large extent on the disk diameter
and much less on the spacing between disks. This is in
agreement with the approximate solution of (14) being
independent of d. Theoretical approximate values {rom
(14) are shown for comparison in Fig. 5.
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IV. Purity oF THE “DipoLE MoDE”

As the purity of the “dipole mode” with a circular
variation of cos ¢ or sin ¢ is essential when the periodic
structure is used as an antenna, it is of some im-
portance to determine experimentally whether any
unwanted surface waves were excited.

A perturbation measurement was used, in which a
perturbing metallic body was placed in the resonator at
points where the fields had to be determined. The rela-
tive change of resonance frequency is proportional to
the work done when the perturbing body is expanded
from zero to a finite volume against the forces of the
field.? By inserting perturbing bodies of appropriate
shape, and given the total energy stored in the resona-
tor, the actual magnitude of the field components can
be determined.

In Figs. 6 and 7 the relative change in resonance
frequency is given as a function of 4/a for prolate and
oblate spheroids, normalized with respect to a sphere
of radius a, perturbation of which is given by

(16)

where A4 is the total energy.®10

It is seen from Figs. 6 and 7 that by using a thin
rod-shaped conducting body, the response to the elec-
tric field parallel to its axis will be far greater than the
contribution of all the other field components, provided
that b/a<<1. By introducing such a thin conducting
cylinder in various orientations, the relative magni-
tudes of the electric fields can be determined. Subse-
quently it is seen from Fig. 7 that a thin conducting
disk with b/a<<1 will effectively respond to the parallel
electric and perpendicular magnetic fields, and since the
electric field has already been found by means of the
cylinder experiment, the magnetic field can now be
determined.

The cylindrical perturbing body used was a copper
rod, 0.16\ long and 0.016A thick (b/e=0.1). It was
held in position near the line by embedding it in a slab
of polyfoam, which was in turn held in a laterally
movable carriage mounted outside the resonator. The
copper rod was thus held in position and could be
moved in the gz direction without introducing any
measurable discontinuity into the resonator except the
perturbing effect of the rod itself.

Response to magnetic field components was ob-
tained by introducing an aluminum disk with ¢ =0.18\
and 5=0.0086\ (b/a=0.048) as perturbing body.

9 L. C. Maier and J. C. Slater, “Determination of field strength
in a linear accelerator cavity,” J. Appl. Phys., vol. 23, pp. 78-83;
January, 1952,

10 [,. C. Maier, “Field Strength Measurements in Resonant Cavi-
ties,” M.L.T., Cambridge, Mass., Tech. Rept. No. 143; 1949.
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Fig. 6—Perturbation due to conducting prolate spheroids,
normalized to a sphere of radius a.
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Fig. 7—Perturbation due to conducting oblate spheroids,
normalized to a sphere of radius a.

A typical set of measurements is shown in Fig. 8.
The perturbing body was moved parallel to the axis of
the structure until a maximum of frequency shift was
observed and thus a maximum of the standing-wave
pattern located. The frequency shift was noted and a
similar measurement was made in the same plane at
right angles. Intermediate readings with 0<¢ <w/2
were also taken, and values of frequency shifts were
found to have a cosine variation with ¢. For the meas-
urement of E4 the perturbing body was shaped to con-
form to a circle p =constant.

From sets of measured values such as shown in Fig. 8
it was seen that the field configuration was indeed that
of a “diple mode.” The fact that E; is zero both at
¢=0 and ¢=7/2 is in good agreement with the ap-
proximate theory given above. The same result is ob-
tained by taking the leading terms in the first equa-
tion of (10), together with the expression for E4 at
p=a from (7), and approximating for d<<), and d <2a.

The ratio E./ZyH, can also be calculated from the
data in Fig. 8. It can readily be shown that
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Fig. 8—Results of perturbation experiment.
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Fig. 9—Theoretical dependence of half- amplitude beamwidth on
diameter 2a and spacing & of disk structure antenna.

<£_> - a[@fﬁgpmpl} 1 (i)
ZoH./ p=p, (8f 1) p=ps Hy(kopy)

where

(17)

(BfE,),,a,,l—frequency shift for conducting rod meas-
uring I, at p=py,
(8fw,) pmpy =frequency shift for conducting dlSk meas-
uring H, at p =ps,
a=factor found from Figs. 6 and 7 in con-
junction with (16) and the dimensions of
the perturbing bodies.

It was found that the ratio E./Z.H, is approximately
1.3, which is in good agreement with a theoretical value
of 1.25 from Fig. 3.

Shefer: Plane Waves on a Periodic Structure

591

V. PeRrioDIC DIisK STRUCTURE AS ANTENNA

There is no radiation from points along the line
unless the periodic structure is terminated, or any
other discontinuity is introduced. The terminal plane
may be treated as a radiating aperture with a field
distribution F(p, ¢). The radiation pattern is given by

§0,8) =+ cos0) [ [ EGo, 0

+ @727 /N)p sin 8 cos (6—8") o dp (18)
where g(0, ¢') is the field intensity at a point on the
surface of a sphere specified by the polar angles 0
and ¢'.

The calculation of radiation patterns [ollows closely
the approach of Brown and Spector*® to surface-wave
end-fire antennas generally. It can be shown® that as
the guided wavelength increases and approaches that
of free space, an approximate expression for the radia-
tion pattern is given by

© 2
g(6) = (14 cos 0)f oHo(jkop)J o <>\—7rp sin t?) dp. (19)
a 0

This is a Lommel-type integral, and integration gives

koaH1(jkoa)J o(w) ++ juHo(jRoa) T 1(u)
(koa)? + u?

g() = (1 4 cos9) (20)

where

2w
# = — a sin 6,
Ao

The expression in (20) can readily be evaluated with
the help of tables. Values for half-amplitude beam-
widths are given in Fig. 9 as functions of the disk
diameter 2a/Mo, with spacing d as parameter. Values
for ko in (20) have been obtained from Iig. 5(a). It is
found that the beamwidth is reduced with decreasing
diameter of the disks or increased spacing, both of
which, in effect, produce a distribution of the guided
wave over a larger aperture. It should be kept in mind,
however, that the practicability of obtaining very
narrow beams is dependent on the efficiency of exciting
a pure surface wave with a guided wavelength nearly
equal to free-space wavelength. Such a surface wave is
very loosely bound to the surface, and the low efficiency
of excitation gives rise to direct radiation from the an-
tenna feed, with resulting broadening of the beam and
unwanted sidelobes.

1§, Silver, “Microwave Antenna Theory and Design,” McGraw-
Hill Book Co., Inc., New York, N. Y.; 1949.
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VI. CoNCLUSIONS

A periodic structure consisting of a linear array of
conducting disks has been investigated, both theoret-
ically and experimentally. The resonator experiments
have established the fact that nonradiating surface
waves propagate along the structure. These are slow
waves, that is, their phase velocity is less than the
phase velocity of an electromagnetic wave in an un-
bounded medium.

The propagation constants for the “dipole mode”
have been experimentally determined for structures of
different dimensions. By using the radiating aperture
approach, the beamwidth has been calculated when
these periodic structures are used as end-fire antennas.

Exact expressions for the field have been set up. Sub-
ject to certain approximations, a secular equation has
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been derived from which the propagation constants
may be calculated. Theoretical values are compared
with experiments.

The purity of the “dipole mode” on the disk structure
has been verified by means of perturbation experiments.
The disk line has thus been found suitable for use as
an end-fire antenna, provided the “dipole mode” is
efficiently excited, without a great amount of direct
radiation from the feeding end.
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The Sinusoidal Variation of Dissipation
Along Uniform Waveguides®

GEORGE PERSKY?

Summary—Standing waves in a waveguide with dielectric
and/or metal wall losses generally give rise to expressions for power
dissipation per unit length containing a term which is a sinusoidal
function of the distance along the waveguide. In the present paper
this phenomenon is explained and expressions for the dissipation are
derived. The development is carried out for TE and TM modes in a
uniform dielectric filled waveguide of arbitrary cross section, and
then again from the standpoint of transmission line theory. The
practical implications of the results are discussed.

INTRODUCTION

When a standing wave exists in a lossy waveguide,
the dissipation of power per unit length as a function
of distance can generally be described by the sum of
two terms, one of which is sinusoidal. While this fact has
occasionally been recognized in one form or another,'—®
it is commonly overlooked in practice, and no detailed

* Received June 28, 1962; revised manuscript received, August
10, 1962. The work reported here was sponsored by the U. S. Army
Signal Research and Development Laboratory, the Office of Naval
Research and the Air Force Office of Scientific Research, under
Contract AF-18(600)-1505.

t Microwave Research Institute, Polytechnic Institute of Brook-
lyn, Brooklyn, N. Y.

*'W. K. Kahn, “A Theoretical and Experimental Investigation in
Multimode Networks and Waveguide Transmission,” Microwave
Res. Inst., Polytechnic Inst. of Brooklyn, N. Y., Res. Rept.
PIBMRI-818-60, pp. 79-86; September 21, 1960.

2D. D. King, “Measurements at Centimeter Wavelength,”
D. Van Nostrand Co., New York, N. Y., p. 27; 1952.

3 R. W. P. King, “Transmission Line Theory,” McGraw-Hill
Book Co., Inc., New York, N. Y., p. 251; 1955.

treatment for the single mode case has, to the author’s
knowledge, been available. One can see intuitively
that wall losses are greatest at the points of maximum
magnetic field and dielectric losses at points of maxi-
mum electric field. Power attenuation in each traveling
wave is therefore not proportional to e¢f2e* as is often
assumed, and the improper use of such attenuation
factors can lead to serious errors in the calculation of
dissipation. This fact is not generally appreciated, al-
though it is well known that in a dissipative guide it is
not possible to speak of net power flow in terms of Pj,,
and Pis, since these quantities are not well defined.

The purpose of this paper is to provide a firm basis
for the accurate calculation of the distribution of dis-
sipation along the direction of propagation and to
point out the areas where calculations of this type are
indicated.

Fig. 1 shows a section of uniform dielectric filled
waveguide of arbitrary cross section with walls of
surface resistivity » and filled with a dielectric material
of conductivity ¢. The dissipation in this waveguide
will be found separately for the TE and TM mode
cases. The analysis will be carried out in terms of
normalized mode functions* (which, it is recognized,

* N. Marcuvitz, “Waveguide Handbook,” McGraw-Hill Book
Co., Inc., New York, N. Y., M.I.T. Rad. Lab. Ser., vol. 10; 1951.



